Signatures from Short Basis Lattice Trapdoors

Edward Eaton

University of Waterloo

December 4, 2015

Overview

- Introduction
- 2 Constructing Trapdoors
- Signature Schemes
- 4 Further Advances

Say we have function f, trapdoor information providing f^{-1} .

Introduction Constructing Trapdoors Signature Schemes Further Advances

Say we have function f, trapdoor information providing f^{-1} . We can construct a Signature scheme as follows:

• G: public key is f and hash function H, secret key is f^{-1}

- G: public key is f and hash function H, secret key is f^{-1}
- S: Given a message m, compute $\sigma \leftarrow f^{-1}(H(m))$

- G: public key is f and hash function H, secret key is f^{-1}
- S: Given a message m, compute $\sigma \leftarrow f^{-1}(H(m))$
- V: Check that $H(m) = f(\sigma)$

- G: public key is f and hash function H, secret key is f^{-1}
- S: Given a message m, compute $\sigma \leftarrow f^{-1}(H(m))$
- V: Check that $H(m) = f(\sigma)$

Scheme is EU-CMA in ROM assuming f is hard to invert (with some assumptions on f).

Introduction Constructing Trapdoors Signature Schemes Further Advances

For those who dislike ROM:

• G: public key is $\{f_m : m \in \mathcal{M}\}$ and public parameter s, secret key is $\{f_m^{-1} : m \in \mathcal{M}\}$

• G: public key is $\{f_m: m \in \mathcal{M}\}$ and public parameter s, secret key is $\{f_m^{-1}: m \in \mathcal{M}\}$

That is, associate with each message m a public function f_m for which you control trapdoor information

- G: public key is $\{f_m: m \in \mathcal{M}\}$ and public parameter s, secret key is $\{f_m^{-1}: m \in \mathcal{M}\}$ That is, associate with each message m a public function f_m for which you control trapdoor information
- S: Given a message m, compute $\sigma \leftarrow f_m^{-1}(s)$

- G: public key is $\{f_m: m \in \mathcal{M}\}$ and public parameter s, secret key is $\{f_m^{-1}: m \in \mathcal{M}\}$ That is, associate with each message m a public function f_m for which you control trapdoor information
- S: Given a message m, compute $\sigma \leftarrow f_m^{-1}(s)$
- V: Check that $f_m(s) = \sigma$

Introduction Constructing Trapdoors Signature Schemes Further Advances

Quality of output of lattice algorithms is generally related to $||\tilde{b}_i||$ (Graham-Schmidt orthogonalization of basis vectors).

Quality of output of lattice algorithms is generally related to $||\tilde{b}_i||$ (Graham-Schmidt orthogonalization of basis vectors). Lattices admit multiple bases. Easy to get a 'bad' basis from a 'good' basis, hard to do reverse.

Generate a good basis S and a bad basis B. The function f will depend on the lattice generated by B. The inverse f^{-1} will depend on solving a problem the nice basis S allows.

We would like this method to satisfy:

Fast to do

- Fast to do
- B reveals no information about S other than $\mathcal{L}(B) = \mathcal{L}(S)$

- Fast to do
- ullet B reveals no information about S other than $\mathcal{L}(B)=\mathcal{L}(S)$
- S is high quality vectors are very short and relatively orthogonal

- Fast to do
- ullet B reveals no information about S other than $\mathcal{L}(B)=\mathcal{L}(S)$
- S is high quality vectors are very short and relatively orthogonal
- L(B) has an appropriate distribution for average-case to worst-case reduction

Definitions

For a matrix $A \in \mathbb{Z}_q^{n \times m}$, the lattice associated with A is

$$\Lambda^{\perp}(A) := \left\{ x \in \mathbb{Z}^m : Ax = 0 \in \mathbb{Z}_q^n \right\}$$

For a basis S, \tilde{S} denotes the Graham-Schmidt orthogonalization of S. $||\tilde{S}|| = \max_i ||\tilde{s}_i||$, (the norm of the basis is the norm of the largest vector)

For a lattice Λ , the discrete gaussian centered at c with parameter s, $D_{\Lambda,c,s}$, is the distribution where for all $x \in \Lambda$, the probability of selecting x is proportional to

$$\exp(-\pi||x-c||^2/s^2)$$

Alwen, Peikert (2010):

There is a fixed constant C>1 and a probabilistic polynomial-time algorithm $GenBasis(1^n,1^m,q)$ that, for poly(n)-bounded $m\geq Cn\log q$ outputs $A\in\mathbb{Z}_q^{n\times m}$ and $S\in\mathbb{Z}^{m\times m}$ such that:

- The distribution of the output A is negligibly (in n) close to uniform
- S is a basis of $\Lambda^{\perp}(A)$
- $||S|| \leq O(\sqrt{n \log q})$

Take in parameters n, m, q. Output matrix $A \in \mathbb{Z}_q^{n \times m}$ negligibly close to uniform and basis S of $\Lambda^{\perp}(A)$.

Take in parameters n, m, q. Output matrix $A \in \mathbb{Z}_q^{n \times m}$ negligibly close to uniform and basis S of $\Lambda^{\perp}(A)$.

General idea: Let $m=m_1+m_2$. Generate $A_1\in\mathbb{Z}_q^{n\times m_1}$ uniformly at random. We will construct the other 'half' of the matrix A_2 to get $A=A_1||A_2|$ at the same time as a basis S.

Generate:

- $U \in \mathbb{Z}^{m_1 \times m_2}$, non singular
- $R \in \mathbb{Z}^{m_1 \times m_2}$, random 'short' matrix
- ullet $G\in\mathbb{Z}^{m_1 imes m_2}$, with entries increasing left to right geometrically
- $P \in \mathbb{Z}^{m_2 \times m_1}$ picking out certain columns of G via GP
- $C \in \mathbb{Z}^{m_1 \times m_1}$ such that $GP + C \subset \Lambda^{\perp}(A_1)$

Set
$$A_2 = -A_1 \cdot (R+G) \in \mathbb{Z}_q^{n \times m_2}$$
. Set $A = A_1 || A_2$.

Then

$$S = \left(\begin{array}{cc} (G+R)U & RP-C \\ U & P \end{array}\right)$$

Introduction
Constructing Trapdoors
Signature Schemes
Further Advances

So we can generate pairs (A, S), where S is a good basis for $\Lambda^{\perp}(A)$, can't get S from A.

So we can generate pairs (A, S), where S is a good basis for $\Lambda^{\perp}(A)$, can't get S from A. Need to turn this into functions f, f^{-1} , where f depends on A, f^{-1} depends on A and S.

Function Definition

$$f_A$$
: { Short vectors in \mathbb{Z}^m } $\to \mathbb{Z}^n$

Function Definition

$$f_A: \{ \text{ Short vectors in } \mathbb{Z}^m \} \to \mathbb{Z}^n$$

$$f_A: x \mapsto Ax$$

Function Definition

$$f_{\mathcal{A}}: \{ \text{ Short vectors in } \mathbb{Z}^m \} \to \mathbb{Z}^n$$

$$f_A: x \mapsto Ax$$

Why is f hard to invert?

Introduction
Constructing Trapdoors
Signature Schemes
Further Advances

• Inhomogenous small integer solution problem (ISIS):

• Inhomogenous small integer solution problem (ISIS): Given integer q, matrix $A \in \mathbb{Z}_q^{n \times m}$, syndrome $u \in \mathbb{Z}_q^n$, real number β find integer vector $e \in \mathbb{Z}^m$ such that Ae = u (mod q) and $||e||_2 \le \beta$.

- Inhomogenous small integer solution problem (ISIS): Given integer q, matrix $A \in \mathbb{Z}_q^{n \times m}$, syndrome $u \in \mathbb{Z}_q^n$, real number β find integer vector $e \in \mathbb{Z}^m$ such that Ae = u (mod q) and $||e||_2 \le \beta$.
- Small integer solution problem (SIS): ISIS with $\mu = 0$

GPV08:

For any poly-bounded m, $\beta = poly(n)$ and for any prime $q \geq \beta \cdot \omega(\sqrt{n\log n})$, the average-case problems $\mathrm{SIS}_{q,m,\beta}$ and $\mathrm{ISIS}_{q,m,\beta}$ are as hard as approximating the SIVP (Shortest independent vectors problem) (among other problems) in the worst case to within certain $\gamma = \beta \cdot \tilde{O}(\sqrt{n})$ factors.

GPV08:

For any poly-bounded m, $\beta = poly(n)$ and for any prime $q \geq \beta \cdot \omega(\sqrt{n \log n})$, the average-case problems $\mathrm{SIS}_{q,m,\beta}$ and $\mathrm{ISIS}_{q,m,\beta}$ are as hard as approximating the SIVP (Shortest independent vectors problem) (among other problems) in the worst case to within certain $\gamma = \beta \cdot \tilde{O}(\sqrt{n})$ factors. So inverting f_A (without S) should be hard.

GPV08:

There is a probabilistic polynomial-time algorithm (SampleD) that, given a basis S of an n-dimensional lattice $\Lambda = \mathcal{L}(S)$, a parameter $s \geq ||\tilde{S}|| \cdot \omega(\sqrt{\log n})$, and a center $c \in \mathbb{R}^n$, outputs a sample from a distribution that is statistically close to $D_{\Lambda,s,c}$

GPV08:

There is a probabilistic polynomial-time algorithm (SampleD) that, given a basis S of an n-dimensional lattice $\Lambda = \mathcal{L}(S)$, a parameter $s \geq ||\tilde{S}|| \cdot \omega(\sqrt{\log n})$, and a center $c \in \mathbb{R}^n$, outputs a sample from a distribution that is statistically close to $D_{\Lambda,s,c}$

Crucial Note: Distribution of output does not depend on S - we reveal no information about basis (unlike GGH, NTRUSign, etc.)

Sample \mathbb{Z} samples from the discrete Gaussian $D_{\mathbb{Z},s,c}$. It works as follows:

Sample \mathbb{Z} samples from the discrete Gaussian $D_{\mathbb{Z},s,c}$. It works as follows:

Define some function $t(n) \ge \omega(\sqrt{\log n})$ (e.g. $t(n) = \log n$)

Sample \mathbb{Z} samples from the discrete Gaussian $D_{\mathbb{Z},s,c}$. It works as follows:

Define some function
$$t(n) \ge \omega(\sqrt{\log n})$$
 (e.g. $t(n) = \log n$)
Sample $x \leftarrow [c - s \cdot t(n), c + s \cdot t(n)] \cap \mathbb{Z}$ uniformly

Sample \mathbb{Z} samples from the discrete Gaussian $D_{\mathbb{Z},s,c}$. It works as follows:

Define some function $t(n) \ge \omega(\sqrt{\log n})$ (e.g. $t(n) = \log n$) Sample $x \leftarrow [c - s \cdot t(n), c + s \cdot t(n)] \cap \mathbb{Z}$ uniformly

With probability $\rho_s(x-c) = \exp(\pi^2|x-c|^2/s^2)$, output x.

Otherwise, repeat.

The SampleD algorithm samples from the discrete Gaussian Λ . It takes as input a basis for a lattice B, a Gaussian parameter s, a centre $c \in \mathbb{R}^n$.

1 Let $v_0 = 0$ and $c_0 = c$.

- **1** Let $v_0 = 0$ and $c_0 = c$.
- ② For i from 0 to n-1:

- **1** Let $v_0 = 0$ and $c_0 = c$.
- ② For i from 0 to n-1:

- **1** Let $v_0 = 0$ and $c_0 = c$.
- ② For i from 0 to n-1:
 - Let $c_i' = \frac{\langle c_i, \tilde{b}_i \rangle}{\langle \tilde{b}_i, \tilde{b}_i \rangle}$ and $s_i' = \frac{s}{||\tilde{b}_i||}$
 - **2** Choose $z_i \leftarrow D_{\mathbb{Z},s'_i,c'_i}$

- **1** Let $v_0 = 0$ and $c_0 = c$.
- ② For i from 0 to n-1:
 - **1** Let $c_i' = \frac{\langle c_i, \tilde{b}_i \rangle}{\langle \tilde{b}_i, \tilde{b}_i \rangle}$ and $s_i' = \frac{s}{||\tilde{b}_i||}$
 - **2** Choose $z_i \leftarrow D_{\mathbb{Z}, s_i', c_i'}$
 - $c_{i+1} = c_i z_i b_i, \ v_{i+1} = v_i + z_i b_i$

- **1** Let $v_0 = 0$ and $c_0 = c$.
- ② For i from 0 to n-1:
 - **1** Let $c_i' = \frac{\langle c_i, \tilde{b}_i \rangle}{\langle \tilde{b}_i, \tilde{b}_i \rangle}$ and $s_i' = \frac{s}{||\tilde{b}_i||}$
 - **2** Choose $z_i \leftarrow D_{\mathbb{Z},s'_i,c'_i}$
 - $c_{i+1} = c_i z_i b_i, \ v_{i+1} = v_i + z_i b_i$
- Output v_n

Can construct f_A^{-1} as follows:

Can construct f_A^{-1} as follows: SamplelSIS takes in a matrix A, a short basis S for $\Lambda^{\perp}(A)$, a gaussian parameter $s \geq ||\tilde{S}|| \cdot \omega(\sqrt{\log m})$, and $u \in \mathbb{Z}^n$. It outputs $e \in \mathbb{Z}^m$ such that $||e||_2 \leq s\sqrt{m}$ and Ae = u. Can construct f_A^{-1} as follows: SamplelSIS takes in a matrix A, a short basis S for $\Lambda^{\perp}(A)$, a gaussian parameter $s \geq ||\tilde{S}|| \cdot \omega(\sqrt{\log m})$, and $u \in \mathbb{Z}^n$. It outputs $e \in \mathbb{Z}^m$ such that $||e||_2 \leq s\sqrt{m}$ and Ae = u.

• Choose arbitrary $t \in \mathbb{Z}^m$ such that $At = u \pmod{q}$ (find with linear algebra. t need not be short).

Can construct f_A^{-1} as follows: SamplelSIS takes in a matrix A, a short basis S for $\Lambda^{\perp}(A)$, a gaussian parameter $s \geq ||\tilde{S}|| \cdot \omega(\sqrt{\log m})$, and $u \in \mathbb{Z}^n$. It outputs $e \in \mathbb{Z}^m$ such that $||e||_2 \leq s\sqrt{m}$ and Ae = u.

- Choose arbitrary $t \in \mathbb{Z}^m$ such that $At = u \pmod{q}$ (find with linear algebra. t need not be short).
- Sample $v \leftarrow \mathsf{SampleD}(S, s, -t)$

Can construct f_A^{-1} as follows:

SampleISIS takes in a matrix A, a short basis S for $\Lambda^{\perp}(A)$, a gaussian parameter $s \geq ||\tilde{S}|| \cdot \omega(\sqrt{\log m})$, and $u \in \mathbb{Z}^n$. It outputs $e \in \mathbb{Z}^m$ such that $||e||_2 \leq s\sqrt{m}$ and Ae = u.

- Choose arbitrary $t \in \mathbb{Z}^m$ such that $At = u \pmod{q}$ (find with linear algebra. t need not be short).
- Sample $v \leftarrow \mathsf{SampleD}(S, s, -t)$
- Output e = t + v

Then Ae = At + Av = u + 0 = u and e is short.

Parameters: Security parameter n, modulus q, dimension $m = O(n \log q)$, bound $\beta = O(\sqrt{m})$, salt length k

Parameters: Security parameter n, modulus q, dimension $m = O(n \log q)$, bound $\beta = O(\sqrt{m})$, salt length k

• $Gen(1^n)$: $(A, S) \leftarrow GenBasis(1^n, 1^m, q)$ Public key is A, private key is S.

Parameters: Security parameter n, modulus q, dimension $m = O(n \log q)$, bound $\beta = O(\sqrt{m})$, salt length k

- Gen(1ⁿ): (A, S) ← GenBasis(1ⁿ, 1^m, q) Public key is A, private key is S.
- Sig(S, msg): Choose $r \leftarrow^{\$} \{0, 1\}^k$. Compute u = H(msg||r). $e \leftarrow SamplelSIS(A, S, ||\tilde{S}||\beta, u)$. $\sigma = (e, r)$

Parameters: Security parameter n, modulus q, dimension $m = O(n \log q)$, bound $\beta = O(\sqrt{m})$, salt length k

- $Gen(1^n)$: $(A, S) \leftarrow GenBasis(1^n, 1^m, q)$ Public key is A, private key is S.
- Sig(S, msg): Choose $r \leftarrow^{\$} \{0, 1\}^k$. Compute u = H(msg||r). $e \leftarrow SamplelSIS(A, S, ||\tilde{S}||\beta, u)$. $\sigma = (e, r)$
- $Ver(A, msg, \sigma = (e, r))$: Check that Ae = H(msg||r) and that $||e||_2 \le \beta \sqrt{m}$. If so, accept. Otherwise, reject.

Given A, find a short e such that Ae = 0

Given A, find a short e such that Ae = 0On hash query $(msg_i||r_i)$:

Given A, find a short e such that Ae = 0On hash query $(msg_i||r_i)$:

ullet Choose $e_i \in \mathbb{Z}_q^m$

Given A, find a short e such that Ae = 0On hash query $(msg_i||r_i)$:

- Choose $e_i \in \mathbb{Z}_q^m$
- Set $H(msg||r) = Ae_i$

Given A, find a short e such that Ae = 0On hash query $(msg_i||r_i)$:

- Choose $e_i \in \mathbb{Z}_q^m$
- Set $H(msg||r) = Ae_i$

On signing query *msg*:

Given A, find a short e such that Ae = 0On hash query $(msg_i||r_i)$:

- Choose $e_i \in \mathbb{Z}_q^m$
- Set $H(msg||r) = Ae_i$

On signing query *msg*:

• Choose $r \in \{0, 1\}^k$

Given A, find a short e such that Ae = 0On hash query $(msg_i||r_i)$:

- Choose $e_i \in \mathbb{Z}_q^m$
- Set $H(msg||r) = Ae_i$

On signing query msg:

- Choose $r \in \{0, 1\}^k$
- Find e corresponding to (msg||r) in hash table

Given A, find a short e such that Ae = 0On hash query $(msg_i||r_i)$:

- Choose $e_i \in \mathbb{Z}_q^m$
- Set $H(msg||r) = Ae_i$

On signing query msg:

- Choose $r \in \{0, 1\}^k$
- Find e corresponding to (msg||r) in hash table
- Output (e, r).

Introduction Constructing Trapdoors Signature Schemes Further Advances

When forgery msg^*, e^*, r^* is received, look up $msg^*||r^*$ in hash table and find corresponding e.

When forgery msg^*, e^*, r^* is received, look up $msg^*||r^*$ in hash table and find corresponding e.

With high probability, $e \neq e^*$ (recall that \mathcal{A} never asked for a signature on msg^*).

When forgery msg^*, e^*, r^* is received, look up $msg^*||r^*$ in hash table and find corresponding e.

With high probability, $e \neq e^*$ (recall that \mathcal{A} never asked for a signature on msg^*).

So $A(e - e^*) = 0$, and we have broken SIS resistance of A.

Bonsai Trees

Given a basis S for $\Lambda^{\perp}(A)$, note that we can generate a (similarly nice) basis for $\Lambda^{\perp}(A||C)$ for any matrix C.

Bonsai Trees

Given a basis S for $\Lambda^{\perp}(A)$, note that we can generate a (similarly nice) basis for $\Lambda^{\perp}(A||C)$ for any matrix C. Let W be (any) solution to AW = -C. Then let

$$S' = \left(\begin{array}{cc} S & W \\ 0 & I \end{array}\right)$$

Bonsai Trees

Given a basis S for $\Lambda^{\perp}(A)$, note that we can generate a (similarly nice) basis for $\Lambda^{\perp}(A||C)$ for any matrix C. Let W be (any) solution to AW = -C. Then let

$$S' = \left(\begin{array}{cc} S & W \\ 0 & I \end{array}\right)$$

Then
$$(A||C)S' = AS + AW + C = 0 + -C + C = 0$$

As well,
$$\tilde{S}' = \left(egin{array}{cc} S & 0 \\ 0 & I \end{array}
ight)$$
 so $||\tilde{S}'|| = ||\tilde{S}||$

As well,
$$\tilde{S}'=\begin{pmatrix}S&0\\0&I\end{pmatrix}$$
 so $||\tilde{S}'||=||\tilde{S}||$
And for any $v\in\Lambda^{\perp}(A||C)$ write $v=v_1||v_2$ Then

$$0 = (A||C)(v_1||v_2) = Av_1 + Cv_2 = Av_1 - (AW)v_2 = A(v_1 - Wv_2)$$

As well,
$$\tilde{S}' = \begin{pmatrix} S & 0 \\ 0 & I \end{pmatrix}$$
 so $||\tilde{S}'|| = ||\tilde{S}||$

And for any $v \in \Lambda^{\perp}(A||C)$ write $v = v_1||v_2|$ Then

$$0 = (A||C)(v_1||v_2) = Av_1 + Cv_2 = Av_1 - (AW)v_2 = A(v_1 - Wv_2)$$

So let e_1 be such that $Se_1 = v_1 - Wv_2$. Then let $e = e_1 || v_2$.

$$S'e = S'(e_1||v_2) = (Se_1 + Wv_2)||v_2 = (v_1 - Wv_2 + Wv_2)||v_2 = v_1||v_2 = v_1||v$$

Bonsai Tree Signature Scheme

```
Gen(1^n): (A_0, S_0) \leftarrow GenBasis(1^n, 1^m, q). For i \in \{1, ..., k\} and b \in \{0, 1\}, generate A_i^{(b)} \in \mathbb{Z}_q^{n \times m} uniformly. Public key is A_0, \{A_i^{(b)}\}. Secret key is S_0.
```

$$Sig(S_0, msg)$$
: Let $\mu = H(msg) \in \{0, 1\}^k$. Define the matrix

$$A_{\mu} = A_0 ||A_1^{(\mu_1)}||A_2^{(\mu_2)}|| \dots ||A_k^{(\mu_k)}||$$

Let $S_{\mu} \leftarrow \operatorname{ExtBasis}(S_0, A_0, A_{\mu})$. Then take $\sigma \leftarrow \operatorname{SamplelSIS}(A_{\mu}, S_{\mu}, ||\tilde{S}||\beta, 0)$. Signature is σ $Ver(A_0, \{A_i^{(j)}\}, \sigma, msg)$: Construct A_μ as above. Accept if σ is a short vector in $\Lambda^{\perp}(A_\mu)$

	Security	Model	pk	sk	sig
PFDH	su-acma	R.O.M.	nm	m ²	m+ r
Bonsai	eu-scma	Standard	(2k+1)nm	m ²	(k+1)m

Boyen, 2010

Rather than having $A_0, \{A_i^{(j)}\}$ and setting $A_\mu = A_0 ||A_1^{(\mu_1)}|| \dots ||A_k^{(\mu_k)}|$ Instead have $A_0, \{A_i\}$ and set

$$A_{\mu} = A_0 + \sum_{i=1}^{k} (-1)^{\mu_1} A_i$$

Can still create a new basis using S.

	Security	Model	pk	sk	sig
PFDH	su-acma	R.O.M.	nm	m^2	m+ r
Bonsai	eu-scma	Standard	(2k + 1)nm	m^2	(k+1)m
Boyen	eu-acma	Standard	(k+1)nm	m^2	m

Rückert, 2010

Strong Unforgeability: A forgery (m^*, σ^*) is considered valid if m^* was never queried or σ^* was not the response when m^* was queried.

Rückert, 2010

Strong Unforgeability: A forgery (m^*, σ^*) is considered valid if m^* was never queried or σ^* was not the response when m^* was queried.

Bonsai trees not strongly unforgeable - If σ is a signature, so is $-\sigma$

Rückert, 2010

Strong Unforgeability: A forgery (m^*, σ^*) is considered valid if m^* was never queried $or \sigma^*$ was not the response when m^* was queried.

Bonsai trees not strongly unforgeable - If σ is a signature, so is $-\sigma$ Rather than sampling preimages to the zero vector, sample preimages to a vector u, which is part of the public key.

	Security	Model	pk	sk	sig
PFDH	su-acma	R.O.M.	nm	m^2	m+ r
Bonsai	eu-scma	Standard	(2k + 1)nm	m^2	(k+1)m
Boyen	eu-acma	Standard	(k+1)nm	m^2	m
Rückert	su-scma	Standard	(2k+1)nm + m	m^2	(k+1)m

Boneh & Zhandry, 2013

Noted that GPV08 Signature scheme security was shown in R.O.M., not Q.R.O.M.

Reproved security in Q.R.O.M. (in fact, showed quantum existential unforgeability under chosen message attack)

	Security	Model	pk	sk	sig
PFDH	q-eu-acma	Q.R.O.M.	nm	m^2	m+ r
Bonsai	eu-scma	Standard	(2k + 1)nm	m^2	(k+1)m
Boyen	eu-acma	Standard	(k+1)nm	m^2	m
Rückert	su-scma	Standard	(2k+1)nm + m	m^2	(k+1)m

Teranishi, Oyama, Ogata (2006): There is a generic conversion from eu-acma signature schemes to su-acma signature schemes based on the collision resistance of a Chameleon Hash function.

Teranishi, Oyama, Ogata (2006): There is a generic conversion from eu-acma signature schemes to su-acma signature schemes based on the collision resistance of a Chameleon Hash function. Chameleon Hash function: a function f that can be generated with trapdoor information td such that without td, f is collision resistant, but with td, f is preimage-sampleable.

Teranishi, Oyama, Ogata (2006): There is a generic conversion from eu-acma signature schemes to su-acma signature schemes based on the collision resistance of a Chameleon Hash function. Chameleon Hash function: a function f that can be generated with trapdoor information f such that without f is collision resistant, but with f is preimage-sampleable. Note - Our f with secret basis f is just this!

Teranishi, Oyama, Ogata (2006): There is a generic conversion from eu-acma signature schemes to su-acma signature schemes based on the collision resistance of a Chameleon Hash function. Chameleon Hash function: a function f that can be generated with trapdoor information f such that without f is collision resistant, but with f is preimage-sampleable. Note - Our f with secret basis f is just this! Teranishi, Oyama, Ogata proved security of transformation in R.O.M. with respect to a specific (discrete-log based) implementation of a chameleon hash.

Teranishi, Oyama, Ogata (2006): There is a generic conversion from eu-acma signature schemes to su-acma signature schemes based on the collision resistance of a Chameleon Hash function. Chameleon Hash function: a function f that can be generated with trapdoor information td such that without td, f is collision resistant, but with td, f is preimage-sampleable. Note - Our f_A with secret basis S is just this! Teranishi, Oyama, Ogata proved security of transformation in R.O.M. with respect to a specific (discrete-log based) implementation of a chameleon hash. Eaton and Song proved security of transformation is Q.R.O.M.

with respect to a generic chameleon hash.

	Security	Model	pk	sk	sig
PFDH	q-eu-acma	Q.R.O.M.	nm	m ²	m+ r
Bonsai	eu-scma	Standard	(2k + 1)nm	m ²	(k+1)m
Boyen	eu-acma	Standard	(k+1)nm	m ²	m
Rückert	su-scma	Standard	(2k+1)nm+m	m ²	(k+1)m
Boyen + ES	su-acma	Q.R.O.M.	$(k+1)nm+m^2$	$2m^2$	2 <i>m</i>

Thank You

Sources:

- How to Use a Short Basis: Trapdoors for Hard Lattices and New Cryptographic Constructions by Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan
- Generating Shorter Bases for Hard Random Lattices by Joël Alwen and Chris Peikert
- Bonsai Trees, or How to Delegate a Lattice Basis by David Cash, Dennis Hofheinz, Eikie Kiltz, Chris Peikert
- Lattice Mixing and Vanishing Trapdoors: A Framework for Fully Secure Short Signatures and more by Xavier Boyen
- Strongly Unforgeable Signatures and Hierarchical Identity-based Signatures from Lattices without Random Oracles by Markus Rückert
- Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World by Dan Boneh and Mark Zhandry
- General Conversion for Obtaining Strongly Existentially Unforgeable Signatures by Isamu Teranishi, Takuro Oyama, and Wakaha Ogata
- Making Existential-Unforgeable Signatures Strongly Unforgeable in the Quantum Random-Oracle Model by Edward Eaton and Fang Song

