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Say we have function f , trapdoor information providing f −1.

We can construct a Signature scheme as follows:

G: public key is f and hash function H, secret key is f −1

S: Given a message m, compute σ ← f −1(H(m))

V: Check that H(m) = f (σ)

Scheme is EU-CMA in ROM assuming f is hard to invert (with
some assumptions on f ).
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For those who dislike ROM:

G: public key is {fm : m ∈M} and public parameter s, secret
key is {f −1

m : m ∈M}
That is, associate with each message m a public function fm
for which you control trapdoor information

S: Given a message m, compute σ ← f −1
m (s)

V: Check that fm(s) = σ
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Quality of output of lattice algorithms is generally related to ||b̃i ||
(Graham-Schmidt orthogonalization of basis vectors).

Lattices admit multiple bases. Easy to get a ’bad’ basis from a
’good’ basis, hard to do reverse.
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Generate a good basis S and a bad basis B.
The function f will depend on the lattice generated by B.
The inverse f −1 will depend on solving a problem the nice basis S
allows.
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We need a methodology to generate a short basis S along with a
hard basis B.
We would like this method to satisfy:

Fast to do

B reveals no information about S other than L(B) = L(S)

S is high quality - vectors are very short and relatively
orthogonal

L(B) has an appropriate distribution for average-case to
worst-case reduction
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Definitions

For a matrix A ∈ Zn×m
q , the lattice associated with A is

Λ⊥(A) :=
{
x ∈ Zm : Ax = 0 ∈ Zn

q

}
For a basis S , S̃ denotes the Graham-Schmidt orthogonalization of
S . ||S̃ || = maxi ||s̃i ||, (the norm of the basis is the norm of the
largest vector)
For a lattice Λ, the discrete gaussian centered at c with parameter
s, DΛ,c,s , is the distribution where for all x ∈ Λ, the probability of
selecting x is proportional to

exp(−π||x − c ||2/s2)
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GenBasis Algorithm

Alwen, Peikert (2010):
There is a fixed constant C > 1 and a probabilistic polynomial-time
algorithm GenBasis(1n, 1m, q) that, for poly(n)-bounded
m ≥ Cn log q outputs A ∈ Zn×m

q and S ∈ Zm×m such that:

The distribution of the output A is negligibly (in n) close to
uniform

S is a basis of Λ⊥(A)

||S || ≤ O(
√
n log q)
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GenBasis Algorithm

Take in parameters n,m, q. Output matrix A ∈ Zn×m
q negligibly

close to uniform and basis S of Λ⊥(A).

General idea: Let m = m1 + m2. Generate A1 ∈ Zn×m1
q uniformly

at random. We will construct the other ‘half’ of the matrix A2 to
get A = A1||A2 at the same time as a basis S .
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GenBasis Algorithm

Generate:

U ∈ Zm1×m2 , non singular

R ∈ Zm1×m2 , random ‘short’ matrix

G ∈ Zm1×m2 , with entries increasing left to right geometrically

P ∈ Zm2×m1 picking out certain columns of G via GP

C ∈ Zm1×m1 such that GP + C ⊂ Λ⊥(A1)

Set A2 = −A1 · (R + G ) ∈ Zn×m2
q . Set A = A1||A2.

Then

S =

(
(G + R)U RP − C

U P

)
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So we can generate pairs (A, S), where S is a good basis for
Λ⊥(A), can’t get S from A.

Need to turn this into functions f , f −1, where f depends on A,
f −1 depends on A and S .
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Function Definition

fA : { Short vectors in Zm} → Zn

fA : x 7→ Ax

Why is f hard to invert?

Edward Eaton Signatures from Short Basis Lattice Trapdoors



Introduction
Constructing Trapdoors

Signature Schemes
Further Advances

Function Definition

fA : { Short vectors in Zm} → Zn

fA : x 7→ Ax

Why is f hard to invert?

Edward Eaton Signatures from Short Basis Lattice Trapdoors



Introduction
Constructing Trapdoors

Signature Schemes
Further Advances

Function Definition

fA : { Short vectors in Zm} → Zn

fA : x 7→ Ax

Why is f hard to invert?

Edward Eaton Signatures from Short Basis Lattice Trapdoors



Introduction
Constructing Trapdoors

Signature Schemes
Further Advances

Inhomogenous small integer solution problem (ISIS):

Given integer q, matrix A ∈ Zn×m
q , syndrome u ∈ Zn

q, real
number β find integer vector e ∈ Zm such that Ae = u
(mod q) and ||e||2 ≤ β.

Small integer solution problem (SIS):
ISIS with u = 0
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GPV08:
For any poly-bounded m, β = poly(n) and for any prime
q ≥ β · ω(

√
n log n), the average-case problems SISq,m,β and

ISISq,m,β are as hard as approximating the SIVP (Shortest
independent vectors problem) (among other problems) in the worst
case to within certain γ = β · Õ(

√
n) factors.

So inverting fA (without S) should be hard.
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SampleD

GPV08:
There is a probabilistic polynomial-time algorithm (SampleD) that,
given a basis S of an n-dimensional lattice Λ = L(S), a parameter
s ≥ ||S̃ || · ω(

√
log n), and a center c ∈ Rn, outputs a sample from

a distribution that is statistically close to DΛ,s,c

Crucial Note: Distribution of output does not depend on S - we
reveal no information about basis (unlike GGH, NTRUSign, etc.)
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SampleZ

SampleZ samples from the discrete Gaussian DZ,s,c . It works as
follows:

Define some function t(n) ≥ ω(
√

log n) (e.g. t(n) = log n)
Sample x ← [c − s · t(n), c + s · t(n)] ∩ Z uniformly
With probability ρs(x − c) = exp(π2|x − c |2/s2), output x .
Otherwise, repeat.

Edward Eaton Signatures from Short Basis Lattice Trapdoors



Introduction
Constructing Trapdoors

Signature Schemes
Further Advances

SampleZ

SampleZ samples from the discrete Gaussian DZ,s,c . It works as
follows:
Define some function t(n) ≥ ω(

√
log n) (e.g. t(n) = log n)

Sample x ← [c − s · t(n), c + s · t(n)] ∩ Z uniformly
With probability ρs(x − c) = exp(π2|x − c |2/s2), output x .
Otherwise, repeat.

Edward Eaton Signatures from Short Basis Lattice Trapdoors



Introduction
Constructing Trapdoors

Signature Schemes
Further Advances

SampleZ

SampleZ samples from the discrete Gaussian DZ,s,c . It works as
follows:
Define some function t(n) ≥ ω(

√
log n) (e.g. t(n) = log n)

Sample x ← [c − s · t(n), c + s · t(n)] ∩ Z uniformly

With probability ρs(x − c) = exp(π2|x − c |2/s2), output x .
Otherwise, repeat.

Edward Eaton Signatures from Short Basis Lattice Trapdoors



Introduction
Constructing Trapdoors

Signature Schemes
Further Advances

SampleZ

SampleZ samples from the discrete Gaussian DZ,s,c . It works as
follows:
Define some function t(n) ≥ ω(

√
log n) (e.g. t(n) = log n)

Sample x ← [c − s · t(n), c + s · t(n)] ∩ Z uniformly
With probability ρs(x − c) = exp(π2|x − c |2/s2), output x .
Otherwise, repeat.

Edward Eaton Signatures from Short Basis Lattice Trapdoors



Introduction
Constructing Trapdoors

Signature Schemes
Further Advances

SampleD

The SampleD algorithm samples from the discrete Gaussian Λ. It
takes as input a basis for a lattice B, a Gaussian parameter s, a
centre c ∈ Rn.

1 Let v0 = 0 and c0 = c .
2 For i from 0 to n − 1:

1 Let c ′i = 〈ci ,b̃i 〉
〈b̃i ,b̃i 〉

and s ′i = s
||b̃i ||

2 Choose zi ← DZ,s′i ,c′i
3 ci+1 = ci − zibi , vi+1 = vi + zibi

3 Output vn
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Can construct f −1
A as follows:

SampleISIS takes in a matrix A, a short basis S for Λ⊥(A), a
gaussian parameter s ≥ ||S̃ || · ω(

√
logm), and u ∈ Zn. It outputs

e ∈ Zm such that ||e||2 ≤ s
√
m and Ae = u.

Choose arbitrary t ∈ Zm such that At = u (mod q) (find with
linear algebra. t need not be short).

Sample v ← SampleD(S , s,−t)

Output e = t + v

Then Ae = At + Av = u + 0 = u and e is short.
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Probabilistic Full Domain Hash (PFDH) From GPV08:

Parameters: Security parameter n, modulus q, dimension
m = O(n log q), bound β = O(

√
m), salt length k

Gen(1n): (A,S)← GenBasis(1n, 1m, q) Public key is A,
private key is S .

Sig(S ,msg): Choose r ←$ {0, 1}k . Compute u = H(msg ||r).
e ← SampleISIS(A,S , ||S̃ ||β, u). σ = (e, r)

Ver(A,msg , σ = (e, r)): Check that Ae = H(msg ||r) and
that ||e||2 ≤ β

√
m. If so, accept. Otherwise, reject.
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Security Reduction

Given A, find a short e such that Ae = 0

On hash query (msgi ||ri ):

Choose ei ∈ Zm
q

Set H(msg ||r) = Aei

On signing query msg :

Choose r ∈ {0, 1}k

Find e corresponding to (msg ||r) in hash table

Output (e, r).
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When forgery msg∗, e∗, r∗ is received, look up msg∗||r∗ in hash
table and find corresponding e.

With high probability, e 6= e∗ (recall that A never asked for a
signature on msg∗).
So A(e − e∗) = 0, and we have broken SIS resistance of A.
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Bonsai Trees

Given a basis S for Λ⊥(A), note that we can generate a (similarly
nice) basis for Λ⊥(A||C ) for any matrix C .

Let W be (any) solution to AW = −C . Then let

S ′ =

(
S W
0 I

)
Then (A||C )S ′ = AS + AW + C = 0 +−C + C = 0
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As well, S̃ ′ =

(
S 0
0 I

)
so ||S̃ ′|| = ||S̃ ||

And for any v ∈ Λ⊥(A||C ) write v = v1||v2 Then

0 = (A||C )(v1||v2) = Av1 + Cv2 = Av1 − (AW )v2 = A(v1 −Wv2)

So let e1 be such that Se1 = v1 −Wv2. Then let e = e1||v2.

S ′e = S ′(e1||v2) = (Se1+Wv2)||v2 = (v1−Wv2+Wv2)||v2 = v1||v2 = v
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Bonsai Tree Signature Scheme

Gen(1n): (A0, S0)← GenBasis(1n, 1m, q). For i ∈ {1, . . . , k} and

b ∈ {0, 1}, generate A
(b)
i ∈ Zn×m

q uniformly.

Public key is A0, {A(b)
i }. Secret key is S0.
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Sig(S0,msg): Let µ = H(msg) ∈ {0, 1}k . Define the matrix

Aµ = A0||A(µ1)
1 ||A(µ2)

2 || . . . ||A(µk )
k

Let Sµ ← ExtBasis(S0,A0,Aµ).
Then take σ ← SampleISIS(Aµ, Sµ, ||S̃ ||β, 0).
Signature is σ
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Ver(A0, {A(j)
i }, σ,msg):

Construct Aµ as above. Accept if σ is a short vector in Λ⊥(Aµ)
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Security Model |pk| |sk| |sig |
PFDH su-acma R.O.M. nm m2 m + |r |
Bonsai eu-scma Standard (2k + 1)nm m2 (k + 1)m
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Boyen, 2010

Rather than having A0, {A(j)
i } and setting

Aµ = A0||A(µ1)
1 || . . . ||A(µk )

k
Instead have A0, {Ai} and set

Aµ = A0 +
k∑

i=1

(−1)µ1Ai

Can still create a new basis using S .
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Security Model |pk| |sk | |sig |
PFDH su-acma R.O.M. nm m2 m + |r |
Bonsai eu-scma Standard (2k + 1)nm m2 (k + 1)m

Boyen eu-acma Standard (k + 1)nm m2 m
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Rückert, 2010

Strong Unforgeability: A forgery (m∗, σ∗) is considered valid if m∗

was never queried or σ∗ was not the response when m∗ was
queried.

Bonsai trees not strongly unforgeable - If σ is a signature, so is −σ
Rather than sampling preimages to the zero vector, sample
preimages to a vector u, which is part of the public key.
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Boneh & Zhandry, 2013

Noted that GPV08 Signature scheme security was shown in
R.O.M., not Q.R.O.M.
Reproved security in Q.R.O.M. (in fact, showed quantum
existential unforgeability under chosen message attack)

Edward Eaton Signatures from Short Basis Lattice Trapdoors



Introduction
Constructing Trapdoors

Signature Schemes
Further Advances

Security Model |pk| |sk| |sig |
PFDH q-eu-acma Q.R.O.M. nm m2 m + |r |
Bonsai eu-scma Standard (2k + 1)nm m2 (k + 1)m

Boyen eu-acma Standard (k + 1)nm m2 m

Rückert su-scma Standard (2k + 1)nm + m m2 (k + 1)m

Edward Eaton Signatures from Short Basis Lattice Trapdoors



Introduction
Constructing Trapdoors

Signature Schemes
Further Advances

Teranishi, Oyama, Ogata (2006): There is a generic conversion
from eu-acma signature schemes to su-acma signature schemes
based on the collision resistance of a Chameleon Hash function.

Chameleon Hash function: a function f that can be generated with
trapdoor information td such that without td , f is collision
resistant, but with td , f is preimage-sampleable.
Note - Our fA with secret basis S is just this!
Teranishi, Oyama, Ogata proved security of transformation in
R.O.M. with respect to a specific (discrete-log based)
implementation of a chameleon hash.
Eaton and Song proved security of transformation is Q.R.O.M.
with respect to a generic chameleon hash.
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Thank You
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